Search results for " ceria"

showing 10 items of 12 documents

Alteration of the Mitochondrial Effects of Ceria Nanoparticles by Gold: An Approach for the Mitochondrial Modulation of Cells Based on Nanomedicine

2020

Ceria nanoparticles are cell compatible antioxidants whose activity can be enhanced by gold deposition and by surface functionalization with positive triphenylphosphonium units to selectively target the mitochondria. The antioxidant properties of these nanoparticles can serve as the basis of a new strategy for the treatment of several disorders exhibiting oxidative stress, such as cancer, diabetes or Alzheimer&rsquo

AntioxidantantioxidantGeneral Chemical Engineeringmedicine.medical_treatmentNanoparticleceria nanoparticles02 engineering and technologyMitochondrionmedicine.disease_causeArticlelcsh:Chemistry03 medical and health scienceschemistry.chemical_compoundQUIMICA ORGANICAmitochondrial functionmedicineGeneral Materials ScienceNRF1Gold-supported ceria nanoparticles030304 developmental biology0303 health sciencesChemistryfungigold-supported ceria nanoparticlesfood and beveragestriphenylphosphonium gold-supported ceria nanoparticles021001 nanoscience & nanotechnologylcsh:QD1-999Colloidal goldBiophysicsNanomedicineMitochondrial functionAntioxidant0210 nano-technologyAdenosine triphosphateCeria nanoparticlesOxidative stressTriphenylphosphonium gold-supported ceria nanoparticles
researchProduct

Mesoporous SBA-15 silica modified with cerium oxide: Effect of ceria loading on support modification

2010

Abstract The present work investigates the effect of ceria loading on silica SBA-15. Five CeO2/SBA-15 samples with CeO2 content equal to 5, 10, 15, 20 and 30 wt% were prepared by wetness-impregnation of the support with cerium nitrate hexahydrate, as precursor, dissolved in ethanol. After drying at room temperature, the resulting samples were calcined at 400 °C for 2h. Characterizations by BET surface area and pore-size distribution, XRD, NH3-TPD and H2-TPR were performed.

Cerium oxideCerium nitrate hexahydrateMaterials scienceEthanolInorganic chemistrylaw.inventionchemistry.chemical_compoundSBA-15 mesoporous CeO2 ceria loadingChemical engineeringchemistrylawCalcinationMesoporous materialBET theory
researchProduct

Effect of the cerium loading on the HMS structure. Preparation, characterization and catalytic properties

2013

Abstract Ce–HMS mesoporous materials were prepared by incipient wetness method starting from HMS synthesized in acid condition. The effect of cerium quantity, in the range of Ce/Si atomic ratio 0.02–0.3, on its structure and properties was investigated. Results showed that the HMS hexagonal structure was maintained after the cerium adding. Furthermore, the surface area and the pore volume were reduced. The presence of the cerianite nanoparticles located within the HMS channels up to 0.05, thus covering the HMS surface at higher Ce/Si atomic ratio, was observed. The catalytic performances of the materials were tested in ethanol partial oxidation reaction.

EthanolMaterials scienceProcess Chemistry and TechnologyInorganic chemistrychemistry.chemical_elementNanoparticleGeneral ChemistryCatalysisCatalysisCharacterization (materials science)HMS Cerianite Catalytic evaluationchemistry.chemical_compoundCeriumchemistryChemical engineeringAtomic ratioPartial oxidationMesoporous materialSettore CHIM/02 - Chimica FisicaCatalysis Communications
researchProduct

Assessing the Electrochemical Performance of Different Nanostructured CeO2 Samples as Anodes for Lithium-Ion Batteries

2021

In this work, six samples of CeO2 are successfully prepared by diverse synthesis routes leading to different microstructures regarding both morphology and particle size. The structural and microstructural characteristics presented by the samples and their influence on the electrochemical response of the prepared anodes are analyzed. In particular, the Ce-CMK3 sample, synthesized from a mesoporous carbon obtained through a CMK3 silica template, displays an enhanced electrochemical response. Thus, capacity values of ~220 mA h g−1 are obtained at a current rate of 0.155 A g−1 after 50 cycles and an excellent cyclability at intermediate current densities. On the other hand, it is observed that …

Fluid Flow and Transfer ProcessesTechnologyQH301-705.5Process Chemistry and TechnologyTPhysicsQC1-999lithium-ion batteriesGeneral EngineeringEngineering (General). Civil engineering (General)Química inorgánicaComputer Science Applicationsanode materialsChemistryanode materials; cerium oxide; lithium-ion batteries; nanostructured ceriananostructured ceriaGeneral Materials ScienceTA1-2040Biology (General)Instrumentationcerium oxideQD1-999Applied Sciences; Volume 12; Issue 1; Pages: 22
researchProduct

Effects of Grain Boundary Decoration on the Electrical Conduction of Nanocrystalline CeO2

2012

In this study, we investigate the effect of decorating the grain boundaries of nanocrystalline undoped ceria on the electrical transport properties. For the decoration, different acceptors (Yb, Y, Bi) were chosen. On decoration, the conduction switches from electronic to ionic. Upon sintering the grains are characterized by a core-shell configuration, in which the core remains undoped while the shell is heavily doped as a consequence of the diffusion of the acceptors toward the grain interior. The shell dominates the overall transport properties of the nanocrystalline ceria and is found to be in the mesoscopic regime.

Materials scienceEXAFS ceria oxide ion conductorCondensed matter physicsRenewable Energy Sustainability and the EnvironmentElectrical conductionMaterials ChemistryElectrochemistryGrain boundaryCondensed Matter PhysicsNanocrystalline materialSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsJournal of The Electrochemical Society
researchProduct

Structure of the Metal–Support Interface and Oxidation State of Gold Nanoparticles Supported on Ceria

2012

An Au/CeO2 model catalyst was prepared by deposition–precipitation, with the aim of obtaining a sample suitable for a detailed X-ray absorption fine structure (XAFS) analysis of the gold–ceria interface structure. The results demonstrate the existence of a large interface between the gold particle and the support oxide, characterized by well-defined Au–O and Au–Ce interactions extending up to ∼6.4 A. The complex interface structure is retained after CO treatment up to 250 °C and subsequent reoxidation at 400 °C. The analysis of the XANES spectra, and the Au–O distance of 2.21 A, longer than Au–O bond lengths previously reported for Au/ceria catalysts, suggest a low oxidation state for the g…

Materials scienceExtended X-ray absorption fine structureOxideXANESSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysisX-ray absorption fine structureMetalCrystallographychemistry.chemical_compoundGeneral EnergychemistryChemical engineeringColloidal goldOxidation statevisual_artEXAFS ceria catalysis goldvisual_art.visual_art_mediumPhysical and Theoretical ChemistryThe Journal of Physical Chemistry C
researchProduct

Structure and the metal-support interaction of the Au/Mn oxide catalysts

2010

Gold catalysts with loading 1 and 10 wt % were-prepared by deposition precipitation method with urea over mesoporous manganese oxide, obtained through a surfactant-assisted procedure by using cetyltrimethylammonium bromide (CTAB), followed by treatment with sulphuric acid. For comparison, Au(10 wt %) was also deposited over commercial CeO2 and SiO2 supports. The materials were characterized by XRD and EXAFS at the Mn K and Au L-III edges and XPS. Moreover, the analyses were performed on the samples treated under 1%CO/He, at 250 degrees C for 90 min. The structural and surface results of the as prepared manganese oxide confirmed the formation of gamma-MnO2 along with some amorphous Mn3O4 upo…

Materials scienceGeneral Chemical EngineeringInorganic chemistryTEMPERATURE CO OXIDATIONOxideBixbyiteAEROBIC ALCOHOL OXIDATIONCatalysisMetalENHANCED ACTIVITYchemistry.chemical_compoundX-ray photoelectron spectroscopyBromideMANGANESE OXIDERAY-ABSORPTION SPECTROSCOPYBODY DISTRIBUTION-FUNCTIONSMaterials ChemistryCONDENSED MATTERCERIAGeneral ChemistryTEMPERATURE CO OXIDATION; RAY-ABSORPTION SPECTROSCOPY; BODY DISTRIBUTION-FUNCTIONS; AEROBIC ALCOHOL OXIDATION; GOLD NANOPARTICLES; NANOCRYSTALLINE CEO2; ENHANCED ACTIVITY; CONDENSED MATTER; MANGANESE OXIDE; CERIAchemistryvisual_artGOLD NANOPARTICLESNANOCRYSTALLINE CEO2visual_art.visual_art_mediumMesoporous materialHausmannite
researchProduct

Electrodeposition of supported gadolinium-doped ceria solid solution nanowires

2012

Gadolinium-ceria solid solution nanowires with tunable composition have been prepared through template cathodic electrodeposition from solutions containing Ce 3+Gd 3+ in a variable ratio. The employed template is Porous Anodic Alumina because it can function as thermal resistant separator supporting the nanowires if used as ionic conductor in Solid Oxide Fuel Cell (SOFC). Scanning Electron Microscopy of the deposited nanostructures revealed that the use of ethanol as solvent and metal chloride as electrolyte allowed to prepare continuous, compact and well defined nanowires with morphological features stable even after thermal treatment. EDX compositional analysis confirms the presence of bo…

Materials scienceRenewable Energy Sustainability and the EnvironmentNanowireNanowires Gadolinium-ceria X-ray diffraction analysis and Raman SpectroscopyCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGadolinium doped ceriaSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringCathodic electrodepositionMaterials ChemistryElectrochemistryPorous anodic aluminaGadolinium-doped ceriaSolid solutionIonic conductor
researchProduct

New synthetic strategies for the enhancement of the ionic conductivity in Ce0.8Sm0.2O2-x

2013

Introduction Samarium-doped ceria has been widely investigat-ed for electrochemistry applications as full density elec-trolyte for intermediate temperature solid oxide fuel cells (IT-SOFC), between 500°C and 800°C [1]. One of the main challenges for the ceria-based electrolytes is to decrease the resistivity at the grain boundary zone, especially in this low temperature range. Microstructure and morphology of the powder play a fundamental role on the densification behaviour and grain boundary properties, thus affecting the overall conductivity of electrolytes [2]. In this light, solution combustion syn-thesis (SCS) represents a flexible method to produce ultra fine powders with suitable mic…

SDC electrolyteIT-SOFCcombustion synthesis ionic conductivitysamarium-doped ceria electrolytesolution combustion synthesis
researchProduct

Large Area Deposition by Radio Frequency Sputtering of Gd0.1Ce0.9O1.95 Buffer Layers in Solid Oxide Fuel Cells: Structural, Morphological and Electro…

2021

We investigate the influence of position, under large circular sputtering targets, on the final electrochemical performance of 35 mm diameter button solid oxide fuel cells with sputter-deposited Gadolinium doped Ceria barrier layers, positioned in order to almost cover the entirety of the area associated with a 120 × 80 mm2 industrial cell. We compare the results obtained via structural and morphological analysis to the Electrochemical Impedance Spectroscopy (EIS) measurements performed on the button cells, disentangling the role of different parameters. The Atomic Force Microscopy analysis makes it possible to observe a decrease in the roughness values from the peripheral to the central zo…

TechnologyMaterials scienceScanning electron microscopeEnergy-dispersive X-ray spectroscopyOxideAnalytical chemistrySurface finishArticleimpedentiometric characterizationchemistry.chemical_compoundsputtered buffer layer morphologySputteringGeneral Materials Sciencelarge area depositionGadolinium-doped ceriaMicroscopyQC120-168.85TQH201-278.5Engineering (General). Civil engineering (General)Dielectric spectroscopyTK1-9971chemistryDescriptive and experimental mechanicsElectrical engineering. Electronics. Nuclear engineeringsputteringTA1-2040Current densityImpedentiometric characterization; Large area deposition; Sputtered buffer layer morphology; SputteringMaterials
researchProduct